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Summary. A flexible and efficient compression scheme for the expansion and 
product vectors Hamiltonian matrix times expansion vectors is presented within 
the Davidson diagonalization method. Our approach is based on an error analysis 
of the energy in terms of the aforementioned vectors and on a compression scheme 
for representing floating point numbers with a variable length mantissa. For  a 
selection of typical quantum chemical test cases total saving factors of up to ten are 
reported. The method is expected to work especially well for extended multi- 
reference CI and full CI cases. As a general outcome of our analysis we obtain limits 
of possible sizes of a CI expansion within the Davidson procedure in relation to the 
energy and the desired accuracy of the energy assuming the usual IEEE floating 
point standard. 
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1 Introduction 

The processing of large amounts of data which arise in ab  in i t io  calculations have 
always been a severe bottleneck for these methods. This problem is of increasing 
importance since the computational power in terms of floating-point operations 
is strongly enhanced from year to year whereas disk space, I/O bandwidth and 
available central memory do not keep up with these developments. Therefore, 
several ways out of this dilemma have been sought. The most straightforward one 
is to avoid these data totally by developing new algorithms. The "direct" approach 
has been extremely successful with circumventing the storage of the two-electron 
integrals on disk for SCF and MP2 calculations [1-31. Unfortunately, the situ- 
ation is much more complex in cases like CI. There, the two-electron integrals have 
to be transformed and stored and CI vectors have to be processed and stored as 
well. Expansion lengths of several millions are routine nowadays for MRCI cal- 
culations and of several billions for FCI calculations [4, 5]. The lowest eigenvalues 
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and eigenvectors of the Hamiltonian matrix are usually determined by the sub- 
space expansion method developed by Davidson [6]. Storage of the necessary 
vectors (preferentially in central memory) poses a problem because of the size of the 
expansion lengths. Even though the numerical operations are usually done in 64 bit 
arithmetic, it is not necessary to store the resulting data in full precision. Therefore, 
various data compression schemes have been developed. Harrison and Handy [7] 
and Knowles [8], and later Olsen et al. [4] and Mitrushenkov [5] have used 
fixed-point truncation schemes in their FCI calculations. Shepard [9] has analyzed 
the truncation error within first-order iterative schemes and the speed of conver- 
gence in more detail in dependence on the number of bits used for the expansion 
vectors. The situation is more difficult for the product vectors Hamiltonian-matrix 
times expansion vectors (which are equally important in terms of data size). They 
were not compressed at all [9] or only after having computed the respective scalar 
products with the previous expansion vectors in full precision [8]. This fact makes 
the storage of at least one product vector in full length necessary. Data compres- 
sion schemes have been developed for the two-electron integrals as well [10-12] 
since they constitute, of course, an important factor in terms of storage require- 
ments in ab initio calculations. However, the aspects of two-electron integral 
compression will not be discussed further here. 

The computational aspects of the Davidson method, especially with regard to 
I/O, have been discussed by Shepard [9]. As has been pointed out by him, the 
subspace manipulation section of the whole Davidson procedure is easily I/O 
bound. Thus, by efficiently compressing the expansion vectors this I/O can be 
reduced substantially or removed completely if the compressed vectors can be kept 
completely in central memory. On parallel computers, I/O is even a much more 
severe bottleneck than on sequential ones. Thus, data reduction schemes will be 
even more effective in parallel computing. Even though the compression scheme 
developed by Shepard works efficiently, there are a number of serious drawbacks in 
his method. Most importantly, as has already been mentioned, only half of the 
relevant vectors are compressed. This fact severely limits the overall savings which 
can be achieved to a maximum factor of two. Moreover, his scheme only handles 
a fixed overall bit-length representation irrespective of the size of the individual 
vector elements. In order to automatically determine the proper truncation level 
some knowledge of the full-precision convergence rate is required which makes 
actual implementations difficult. 

In this work we want to present an improved data compression approach within 
the Davidson diagonalization method. We want to develop a scheme where we do 
not have one single cutoff value but where the number of digits used to represent 
a given vector element varies smoothly according to its magnitude. We also want to 
include the products Hamiltonian-matrix times trial vector. 

2 Formalism 

2.1 The Davidson scheme 

In order to develop our compression scheme let us start with the matrix eigenvalue 
equation 

He = Ee, (1) 

whereHis the Hamiltonian matrix of dimension Ncj and c and E are its eigenvector 
and eigenvalue, respectively. In the subspace expansion method of Davidson [6-1, 
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the eigenvector c is approximated by a vector u which is expanded into a linear 
combination of correction vectors vi: 

N 

u = F, ~,vi, (2) 
i=1 

where N is the dimension of the subspace and the expansion coefficients c~; are 
determined from the small eigenvalue problem 

Jq~ = Es~, (3) 

where/~,j = vtHvj and Sit = v]vj. We use an orthogonal set of expansion vectors 
v~ which are, however, not normalized. From the residuum vector 

r = (fir - E)u (4) 

a new expansion vector vN+l is computed (for details see [6]) and an improved 
approximation u according to Eq. (2) is determined. This iteration scheme is 
continued until a given convergence limit is reached. 

In large-scale CI calculations the most time-consuming step is the calculation of 
the matrix-vector product 

wi = H v i .  (5) 

As has already been pointed out in the Introduction, the dimension of the eigen- 
value problem (1) can easily reach several million configurations. Thus, 2N vectors 
of that expansion length have to be stored. This can be either done in central 
memory or else, if this is not sufficient, on disk. In either case it is highly desirable to 
reduce the actual amount  of data. In the first case, larger CI expansion sets can be 
held completely in central memory, and in the second case disk I/O is reduced. 

Our aim is to derive relations between a given error 

A/~ = /~  - E (6) 

in the energy and errors in the v and w vectors. We do so by looking first at errors in 
u and in 

p = H u  (7) 

and relate these errors subsequently to those in the v,'s and w,'s. Then, these 
relations will be used to derive a compression scheme for these vectors. 

2.2 Error  analysis  f o r  the u vector  

Let us start with the error analysis with respect to the u vector. We write the sub- 
space energy as 

E = 2, Z~ u,H~juj 
Z, u~ (8) 

The summations in Eq. (8) and in all subsequent formulas extend - if not otherwise 
stated - over the dimension Nc~ of the CI expansion. A,,/~ (the index u in the 
following Eq. (9) is used to emphasize the expansion into the components of u) is 
expanded into a Taylor series around the exact vector c: 

cA . ,+  2 ,  d u ' A ' +  " (9) 
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with 
Au = u - c. (10) 

The first derivatives are zero because of the stationarity property of Eq. (1). By 
straightforward differentiation we get for the second-order term 

2 - -  ~'i ~.j(Ho -- E6o)AuiAu~ 
A , E  = E, c~ ' (11) 

which reduces to 

A 2 E = Z ~ (Hij - Eli  j) A u, A uj (12) 
i j 

because the exact eigenvector c of Eq. (1) is normalized. In Eq. (12) we approximate 
the matrix H by its diagonal elements, E by/~ and replace the error Aui of each 
element ui by a constant overall value Au with 

(Aut) 2 <~ (Au) 2 (13) 

and get an approximate expression 

A,,2Eapprox = (Au) 2 ~ (H. - E) (14) 
i 

for A,2/~. From the requirement that ]A2J~,pprox[ is less than or equal to a given error 
threshold [A,E] we obtain the following relation between [Aul and [A,E[: 

f Ih,EI (15t 
tAul <<. IF.~(H,- /~) l '  

This expression will be used later for the development of the compression scheme 
for the v; vectors. The approximation of H by its diagonal elements is necessary 
in order to obtain manageable formulas. The same approximation is used in the 
Davidson method for calculating a new trial vector. Thus, in cases where H is not 
dominated by its diagonal elements anymore general problems with the entire 
Davidson scheme are to be expected (see also Sect. 3). It is important to note that 
we use this approximation only for the compression of the trial vectors and not for 
the vectors wi. Therefore, the variational character of the Davidson procedure will 
not be affected by this approximation. 

2.3 Error analysis for the p vector 

If one compresses the vectorp for the current (compressed) vector u an additional 
error is obtained. The numerical operations involved in the matrix multiplication 
Hv~ itself leading to p are always carried out in full precision. No error analysis is 
attempted for that step. 

In order to evaluate AvE we write/~ as 

£ = Ei ulpi 
Eiu2 , (16) 

and, upon expansion ofp  as 

P =P  .. . .  t + Ap, (17) 
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obtain the result 

AvE = ~ uiAp, = ~ uisign(Ap~)lAp, I, (18) 
i i 

since u is normalized. In analogy with Eq. (13), replacing lApel by a constant value 
IApl we get 

Ap/~z~vpro x = I Apl y. sign(Ap,)u, (19) 

and its absolute value is bounded from above: 

IAvE, pproxl ~< IApl • [u,I. (20) 

Thus, we require that for a given error threshold AvE 

lAkE[ >1 lAp[ Z lUll (21) 
i 

which leads to 

IApl <~ IAvE--------~II (22) 
E~luil" 

2.4 Error analysis for the v and w vectors 

Up to now we have obtained an error analysis related to the vectors u and 
p (Eqs. (15) and (22)). However, the basic quantities are the vi's and wi's and not the 
u and p vectors. In order to apply this analysis to the v~ and w~ vectors indepen- 
dently, we only have to make sure that the linear combination coefficients c~ of 
Eq. (3) do not increase the compression error. This could happen, e.g. by some 
arbitrary rescaling of the v; vectors before compression. Normalization of the v~'s is 
not advisable since it would lead to degradation of our compression scheme. Since 
we want to achieve maximum efficiency in saving storage space and numerical 
stability, the vector VN+~ (N being the current subspace dimension) is rescaled 
before using it to compute wN+ 1. For  that purpose we make the two-dimensional 
variational ansatz 

/g(N+ 1) = 0~1U(N) q-  ~2VN+ 1 (23) 

and rescale VN+I by ~2. 
All matrix elements for this small eigenvalue problem are readily available 

except for H22 = v]v + 1HIJN+ 1- In this c a s e , / / i s  approximated by its diagonal 
elements in analogy to our procedures above. '~ 

2.5 Compression scheme 

The requirement for the elements of the v~ and w~ vectors not to exceed given 
constant overall errors means that the number of significant digits in these elements 
varies and that this number will decrease with decreasing absolute values of the 
vector components. In order to make use of this situation, we devised a special 
floating point representation with a variable length of the mantissa and truncate 
the insignificant digits according to our error analysis. The conversion of the 
original, uncompressed numbers to our new scheme depends, of course, on the 
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original floating point representation. For  the purpose of the presentation of 
the formalism, we take reference to the IEEE standard [13] because of its wide- 
spread use. However, the adaption to other floating point representations is 
straightforward. 

Basically, there are two possibilities to store the information about the com- 
pressed numbers. In our first version we stored exponent (seven bits) and sign of the 
number in eight bits and then the mantissa. A storage scheme which is slightly 
more efficient by one bit [-14] is given by storing the number of mantissa bits 
instead of the exponent since the maximum number of mantissa bits can be 
represented by six bits. 

In the original floating point number, 12 bits are used for sign and exponent 
whereas only seven bits (six bits for the number of mantissa bits and one bit for 
the sign) are taken for the compressed numbers. Consecutive zeros are stored in 
a compact way by using a repetition factor. To find out how many bits in the 
mantissa are actually needed, the maximum error in dependence on the number of 
bits is calculated. We want to truncate all numbers such that the absolute errors in 
the u andp  vectors do not exceed the absolute errors given by Eqs. (15) and (22). In 
Scheme 1, all numbers in absolute values which can be represented within the IEEE 
standard are listed in rows. If the absolute value of a number xi is located in the 
interval given in the first line of Scheme 1, we utilize only the leading no bits of the 
mantissa. Since in the following lines of Scheme 1 the limits for the numbers are 
always reduced by a factor of two, the number of bits used for the representation of 
the mantissa is reduced correspondingly by one. Conversely, if the limits increase 
by a factor of two then the number of bits is increased by one. All numbers 
~<2 -"°-  1(2 - -  2 - 5 2 )  in absolute value are set to zero. Thus, for a given number 
with exponent exp (see Scheme 1) we use 

nexp = min(max((no + exp), 0), 52) (24) 

bits. The maximum error is found for the zero bit mantissa as 2 .... ( 2 -  2-52). 
Instead of truncating, the mantissa is actually rounded. This reduces the maximum 
error to 2 .... (1.5 - 2-5z). 

Substituting the maximum error defined in the previous paragraph for I Au[ in 
Eq. (15) we compute a value no,,, as 

- 2-5z)x/ ly ,  ,. (H,  - E)l, ) 

Similarly from Eq. (22), no,p is given as 

( l A p E l  ) (26) 
no,p = - l o g 2  (1.5 - 2 - 5 2 )  Z~ tu~l " 

The actual number of bits for the mantissas are chosen as the next larger integers of 
no,,, and no,v, respectively. 

So far, A,,E and AvE have been treated independently. However, in prac- 
tical applications one wants to specify only one energy threshold AE. We set 
[A,EI = aIAE] and lApEl = blAEI with a + b = t and a > 0, b > 0 and optimize 
the target function 

f(a, b) = no,,(a) + no.p(b). (27) 

Straightforward calculation gives a = ½ and b - ~. 
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20(2 - 2 -52) >~ [xi[ >~ 20 

2-1(2 - 2 -52)/> Ix~l > 2 -1 

2 ..... +1(2 -- 2 -sz) >/Ix~l/> 2 -"°+~ 

2-"°(2 -- 2 -52) ~> Ix~l > 2 .... 

2.6 Analysis o f  the residuum 

345 

(exp = 0), mantissa length no bits 

(exp = -  1), mantissa length no - 1 bits 

(exp = --no + 1), mantissa length 1 bit 

(exp = - n o ) ,  mantissa length 0 bit 

Scheme 1 

The analysis of the residuum follows the above lines. We derive a relation between 
r z and the energy convergence threshold AE. In analogy to Sect. 2.2, r z is expanded 
into a Taylor series in Au resulting in the following expression: 

r2  = L L E ( H i k  - -  E t ~ i k ) ( H J  k - E6il,)AuiAu~ + "'" (28) 
i j k 

Truncating after the term of second order, approximating H by its diagonal and 
substituting the Au~'s by a constant value Au gives 

r,pp,.ox2 = (Au) 2 ~ (Hi/-/~)2. (29) 
i 

Setting Au equal to the maximum error 2 ...... (1.5 - -  2 -52) as defined in Sect. 2.5 
gives 

r2approx = 2-2""'(1.5 - 2-52) 2 • (H, - E) 2. (30) 
i 

The value of no,r is the next larger integer of the result calculated from Eq. (25) with 
the total convergence threshold AE replacing A,E. On convergence, the value of r 2 
calculated according to Eq. (4) is less or equal than that given by Eq. (30). 

2. 7 Computational considerations 

The compression scheme has been implemented into the COLUMBUS program 
system [15, 16] and is also available as a separate program. Bit packing routines 
have been written in Fortran. In the uncompressed version of the COLUMBUS 
program, blocks of data with fixed record length were written to disk. Because 
of the dynamic packing scheme this record length is now variable. A dynamic 
indexing scheme has been developed for bookkeeping purposes of the individual 
records. Routines written in C are used for bite-adressable I/O. The compression 
and decompression steps are performed in place. 

On the basis of a given energy threshold the structure of the compression 
scheme and convergence criteria are determined automatically at the beginning 
of the program. Additionally, the packing scheme for the w vectors are adjusted 
dynamically in the course of the iterations. Eqs. (25), (26) and (30) have to be 
evaluated at the beginning of the calculation. Therefore, an estimate of E has to be 
made. Currently, we use for it the largest diagonal element of the Hamiltonian 
matrix in absolute value multiplied (somewhat arbitrarily) by a factor of 1.1. If it 
turns out that this estimate is not valid anymore in the course of the iterations, the 
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packing scheme for the v vectors is adjusted. At the beginning of the calculation, 
~i [ui[ in Eq. (26) is approximated by its upper bound x/~o.  Later, the current 
value of the sum is used. 

It is important to note that the number of iterations does not increase by the 
compression scheme as compared to an equivalent calculation with the same 
energy threshold but without data compression. 

3 Results and discussion 

For the purpose of comparison with the previous work of Shepard [9], we start our 
presentation of applications with the modified Nesbet matrices 

Hij= 1+ 6~j7(2i- 2) f o r l i - j l ~ < w  (31) 

as defined in Ref. [9]. 7 is a scale factor and w is a width parameter. The fully 
converged energies of Eq. (1) were obtained by the Davidson procedure using full 
double precision (64 bit) accuracy for storing the v and w vectors. They are expected 
to be accurate to all digits tabulated. In Table 1 two groups of examples are shown. 
The first group refers to 7 = 1. In this case H is dominated by the diagonal 
elements. For these examples the savings increase dramatically with decreasing 
width w because of the efficient storage of consecutive zeros. Comparing with the 
results obtained by Shepard [-9] (No = 10000, w = 9999 and 99, see Figs. 2 and 
5 in [9]) we find that at least 16 (w = 9999) and 8 (w = 99) bits had to be used in his 
work if the number of subspace iterations should not increase compared to the 
calculation in full precision. This gives savings of 4 and 8 for the v vectors but only 
1.6 and 1.8 altogether. These numbers have to be compared with our total saving of 
3.6 and 97.6. 

In the second group of examples, the dominance of the diagonal elements 
compared to the off-diagonal ones has been reduced by choosing smaller values for 
7. These examples should test the validity of replacing H by its diagonal values. Up 

Table  1. Resul ts  for the modif ied  Nesbe t  matr ices  a'b'° 

w 7 Ed E ~ -  E No. of f r f,~ f, o h 

i te ra t ions  

9999 1 0.16758194 8.5 x 10 -7 3 5.6 2.5 3.6 

999 1 0.19808527 5 .2x  10 -7 5 18.0 7.7 11.1 

99 1 0.25504648 7.8 × 10 -7 5 133.5 73.9 97.6 

9 1 0.35975609 2.3 x I 0 - 7  5 895.5 641.0 758.6 
9999 0.05 0.00993642 5.2 x 10 . 7  5 7.1 2.6 4.0 
9999 0.04 0.00796467 7.0 x 10-  v 5 6.8 2.6 4.0 

9999 0.03 0.00598520 7.7 x 10-  7 5 6.8 2.7 4.0 
9999 0.02 0.00399796 7.3 x 10 . 7  5 11.1 2.7 4.6 

a g c  I = 10000, for the defini t ion of the pa rame te r s  see Eq. (31) 
energy convergence  th resho ld  AE = 10 . 6  

° all  energies are g iven in a.u. 
d fully converged,  lowest  eigenvalues,  see Eq. (I) 

° converged  subspace  energies,  see Eq. (3) 
f saving factors  for the v vectors  

g sav ing  factors for the w vectors  
h to ta l  sav ing  factors  
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to a value of ?, = 0.02 the Davidson method converges without problems. The 
calculations in full precision and with compression agree within the specified limits 
as they should. For  ~ = 0.01 convergence could not be achieved even in the full 
precision calculation. More sophisticated update methods for the construction of 
the trial vectors are necessary in this case. This example illustrates very nicely the 
validity of our assumption that as long as H is well represented by its diagonal 
in the original Davidson scheme this will also be the case for our compression 
formalism. 

In Table 2, the results of a collection of configuration interaction calculations 
including all single and double substitutions from a set of reference wave functions 
(MRCISD) are shown. The computations on the CH3 molecule were performed 
using a 7 orbital/7 electron CAS reference wave function. The basis sets were taken 
from the compilation by Dunning [17] and consisted of cc-pVDZ, cc-pVTZ and 
cc-pVQZ basis sets. For  more information on these examples see Ref. [18]. The 
electronic ground state of butadiene was calculated using Dunning's cc-pVDZ and 
cc-pVTZ basis sets. The SR calculations were based on a closed-shell SCF calcu- 
lation and the MR calculations on a 4 orbital/4 electron CAS in the ~-system. 

Two energy convergence thresholds of 10 -4 and 1 0  - 6  have been chosen. As in 
the case of the previously discussed generalized Nesbet matrices, the compression 
for the v vectors is much more effective as compared to the w vectors. These 
findings come from the well-known general fact that the error in the eigenvalue 
depends quadratically on the error in the CI coefficients (see Eq. (12)) and is linear 
in the product vector (see Eq. (18)). Savings up to a factor of twenty could be 
achieved for the v vectors. Total saving factors range from four to ten. The smallest 

Tab le  2. Resul ts  fo r  v a r i o u s  test  e x a m p l e s "  

NcI E b A E  c E d --  E ./;e .)twr fotg 

C H 3 p V D Z  7 0 2 5 4  - 39 .71416814 10 - 6  1 x 10 - 7  9.9 4.5 6.3 

10 - 4  4 x  10 -5  17.0 6.5 9.8 

C H 3 p V T Z  6 2 4 3 3 4  - 39 .75757058 10 - 6  2 x 10 -7  11.7 4.6 6.7 

10 - 4  6 x 10 - 5  18.7 6.2 9.7 

C H 3  1058  400  - 39 .76527616 10 - 6  2 x 10 -  7 10.9 4.5 6.5 

C: p V Q Z  10 - 4  6 x  10 - s  21.9 6.3 10.4 

H:  p V T Z  

b u t a d i e n e  

p V D Z - S R  

b u t a d i e n e  

p V T Z - S R  

b u t a d i e n e  

p V D Z - M R  

8 2 7 7 2  - -  155.42885615 10 -6  1 x 10 - 7  6.5 2.9 4.1 

10 - 4  3 x 10 - 6  8.1 3.9 5.4 

2 9 0 3 8 0  - 155.53544485 ]0  -6  1 x 10 - 7  6.6 2.8 4.1 

10 - 4  3 × 10 - 6  8.3 3.7 5.3 

1 551 170 - 155.45426453 10 - 6  2 × 10 - v  8.2 3.9 5.4 

10 - 4  4 x  10 -5  10.4 5.2 7.1 

all energies  a re  g iven  in a.u.  

b fully conve rged ,  lowest  e igenva lues ,  see Eq. (1) 

c ene rgy  c o n v e r g e n c e  t h r e s h o l d s  

d c o n v e r g e d  s u b s p a c e  energies ,  see Eq.  (3) 

° sav ing  fac to r s  fo r  the  v vec to r s  
f s av ing  fac to r s  for  the  w vec to r s  

g to ta l  s av ing  fac to r s  
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ones are obtained for the SR calculations since there one does not find so many 
relatively small CI coefficients (in absolute value) as compared to the MR cases 
and, thus, the compression cannot be as effective. 

Besides the discussion of the specific examples shown in Tables 1 and 2, we can 
also draw some general conclusions for the Davidson procedure from our analysis. 
Since the vector u is normalized, its largest element in absolute value has to be less 
than or equal to one. In case of convergence of the Davidson scheme, p ~ Eu and 
the largest elements inp  are of the order E. According to Sect. 2.5, we need for the 
representation of those numbers no, p + exp~ bits. We allow a maximum number of 
48 significant bits reserving four bits for rounding errors. Therefore, we have the 
following two conditions: 

and 

no,. ~< 48 (32) 

no,v + expE ~< 48. (33) 

no,, and no,v are integer and given by Eqs. (25) and (26). In order to evaluate 
Eq. (25) in general terms, we assume the relation lY~ (H,  - E)I ~< NciI/~l which is 
valid, e.g. for the case E < H ,  <~ O. In Eq, (26), Y i lull is replaced by its upper bound 
x/~cl. The maximum CI dimension Ncl,max is obtained if at least for one of the 
expressions (32) and (33) equality is achieved. The relation between Nc~ . . . . .  /~ and 
AE is illustrated in Table 3. If for a certain set of /!  and AE values the CI dimension 
exceeds Nc~ . . . .  the calculation has to be performed in a higher precision than the 
52 bit mantissa of the IEEE standard or else the accuracy requirement has to be 
reduced. Usually, in practical applications Nc~ and E are given which allows to 
check the desired accuracy of the energy. 

The importance of I/O bottlenecks in the Davidson scheme has already been 
discussed at the beginning. By means of the data compression, I/O related to the 
v and w vectors is reduced at the cost of CPU time. In case that thereby all vectors 

T a b l e  3. M a x i m u m  C I  d i m e n s i o n s  Nc~ . . . .  i n d e p e n d e n c e  

o n  energ ies  a n d  ene rgy  t h r e s h o l d s  

E "'b A E  ~ N o  . . . .  

- 102 10 -11 382 

1 0 - 1 o  38 208 

1 0 -  9 3 820 802 

10 - 8  3 8 2 0 8 0 2 5 9  

- 103 10 - 1 °  597 

1 0 -  9 59 700 

10 - s 5 970  004  

1 0 -  7 597 000  404  

- 104 10 . 9  233 

1 0 -  8 23 320 

10 . 7  2 3 3 2 0 3 2  
10 - 6  233 203 283 

energies  in a.u.  
b see Eq.  (3) 

° ene rgy  c o n v e r g e n c e  t h r e s h o l d s  
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can be held in central m e m o r y  this part  of the I /O is, of course, removed com- 
pletely. In order  to illustrate the situation C P U  and I /O times have been measured 
separately. The rates for I /O and compression have been determined on an IBM 
RS/6000 model  7012-3BT with the C O L U M B U S  program for the three cases with 
the largest CI  dimensions given in Table 3. We obtain an average rate of I /O 
(for the v and w vectors) of about  2 MB/s and an average rate for compression 
of 5-10  MB/s depending on the case. The fact that  the C P U  efficiency is certain to 
increase further in relation to disk I /O will favor our compression scheme even 
more  in the future. 

4 Conclusions 

A general and efficient compression algori thm for the subspace expansion vectors 
vi and their matrix products  wi = Hv; within the Davidson diagonalizat ion ap- 
proach  has been presented. In case of SRCI-SD and M R C I - S D  calculations, 
typical saving factors between 4 - 7  are obtained for an accuracy of 10 -6  a.u. in the 
energy. Fo r  larger thresholds (e.g. 10 . 4  a.u.), even much larger savings are found. 
This scheme is expected to be especially profitable with increasing number  of small 
contr ibut ions to the CI  vector as is the case with larger MR spaces and FCI  
calculations. The  advantage  relative to previous compression schemes is the 
inclusion of both  the subspace expansion vectors vi and all the produc t  vectors 
Hvi and an analysis of the errors due to compression and automat ic  control  of 
the Davidson  iteration process. The number  of necessary iteration steps is not  
increased by the compression.  
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